
 1

 

 
 
 
 
 
 

 

 

The Measurement of surface energy of polymer by means 
of contact angles of liquids on solid surfaces 

 

A short overview of frequently used methods 
 

 
 
 

by 
 

Finn Knut Hansen 
Department of Chemistry 

University of Oslo 
 
 



 2

Definitions 
 

Surface tension and surface energy 
 

F

dx

L

 
 
Surface tension form force: 
 
The force, F, involved in stretching a film is: F = γ L   γ = surface tension (constant) 
 
This means: γ = F/L  i.e. force/unit length Units: N/m or mN/m (= dyn/cm in c.g.s units) 
 
Surface energy from work: 
 
The work, dW, involved in increasing the surface by a length dx is: dW = dG = γ L dx = γ dA 
 
This means:  γ = dG/dA  i.e. free energy/unit area  Units: J/m2 = N/m 
 
Surface tension and surface energy are interchangeable definitions with the same units 
 

Work of adhesion and work of cohesion 
 
Work of adhesion 

The work of adhesion between 2 (incompatible) 
substances is: 
 

Wa = W12 = γ1 + γ2 - γ12 
 
or:  γ12 = γ1 + γ2 - Wa 
 
 
 

Work of cohesion 
The work of cohesion of a single substance is: 
 

Wc = W11 = γ1 + γ1 - 0 = 2 γ1 
 
I.e.  γ12 = 0.5 (Wc

1 + Wc
2) - Wa 

 

γ12

γ2

W12

γ1

γ1

W11

γ1

γ12 
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Young’s equation  
 

When the liquid does not spread, a drop has a 
contact angle on the surface. The balance 
between the forces on the surface gives: 
 
Youngs Equation: γ2 = γ12 + γ1 cos θ 
 
NB: Only valid in “dry wetting” 
 

 
In cases with “wet wetting”, the surface pressure of the liquid vapor on the solid is substantial. 
In these cases, γ2 becomes lowered by the surface vapor pressure π.  
 
So that: γ2 = π + γ12 + γ1 cos θ 
 
Expressed by the work of adhesion we can write:  
 
Wa = γ1 + γ2 - γ12 = γ1 + γ1 cos θ = γ1(1+cos θ)  This is the Young - Dupree equation 
 
 

Critical surface tension - Zisman plot 
 
Zisman et al. (1950)1 found an empirical 
connection between cosθ and γ1: 
 
If we measure the contact angle of many 
liquids on the same surface, and plot cosθ 
against γ1, we get a curve that can be 
extrapolated to cos θ =1. 
 
The extrapolated value is called the 
critical surface tension of the solid 
surface. 
 
Note: This is not necessarily the same as 
the surface tension of the solid, γ2. 
 
 
 
There are 2 problems:  1. The line is not really straight (it is more hyperbolic) 

 2. γc is not the same as γ2 (only if γ12= 0 when θ = 0) 
 
In DROPimage the Zisman Plot tool performs an ordinary linear Zisman plot. 
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The interaction parameter and the work of adhesion 
 
The work of adhesion has been expressed by Good and Girifalco (1960)2 by the geometric 
mean of the surface tensions in the same way as the Hamaker constant: 
 

( )1/ 2a
1 2W 2= Φ γ γ  where Φ is the Interaction parameter, 0.5 < Φ < 1.15 

 
Φ is a function of the molar volumes of substance 1 and 2: 
 

( ) ( )
121 2

2 1/ 2
1 2 11 22

A4r r

r r A A
Φ =

+ +

∑
∑ ∑

  where r1, r2 = molecular radii 

 
and Σ A is the sum of London constants (or corresponding) for all types of intermolecular 
forces (dispersive, polar, acid-bas, etc.) 
 
If we insert for Wa in the Young-Dupree equation, we get: 
 

( ) ( )1/ 2a
1 2 1W 2 1 cos= Φ γ γ = γ + θ  or ( )2

2 1 2
1 cos

4

+ θ
γ = γ

Φ
 

 
Φ has been calculated theoretically, but the results have often been misleading.  
 
It is possible to calculate empirical values for Φ by using values of Φ measured by 
liquid/liquid interactions in systems of similar polarity. 
 
In a recent publication, Kwok and Neumann (K&N)3 have argued for using an analytical 
expression, i.e. and equation of state for Φ. Their expression is: 
 

( )2
1 2exp ⎡ ⎤Φ = β γ − γ⎣ ⎦  

 
It is easily seen that if γ1 = γ2 then Φ = 1. The magnitude of β is therefore crucial in giving a 
universally correct work of adhesion, if such an expression is possible. K&N have determined 
this experimentally from an extensive amount of measurements of low energy polymer 
surfaces. They found β = 0.0001247 (m2/mJ)2 to give the best all-over results, although it 
varied some. 
 
This method has been implemented in DROPimage’s Surface Energy (One Liquid) tool. 
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Fowkes’ theory 
 
Fowkes’ theory is based on 2 fundamental assumptions: Additivity and the geometric mean 
 
1. Surface forces (energies) are additive: γ = γd + γp + γh + γi + γab + ... 
 
where  d = dispersion force 
 p = polar force 
 h = hydrogen bonding force 
 i = induction force (Debye) 
 ab = acid/base force 
 … etc. 
 
2. Geometric mean is used for the work of adhesion for each type of force (energy): 
 

( )1/ 2d d d
12 1 2W 2= γ γ  , ( )1/ 2p p p

12 1 2W 2= γ γ , ( )1/ 2h h h
12 1 2W 2= γ γ , etc. 

 
The general expression for W12 is: ( ) d p

12 1 12 12W 1 cos W W ...= γ + θ = + +  
 

And for γ12 thus: ( ) ( )1/ 2 1/ 2d d p p
12 1 2 1 2 1 22 2 ...γ = γ + γ − γ γ − γ γ −  

 
By using a liquid that only interacts with the surface by dispersion forces, we can write: 
 

( ) ( )1/ 2d
12 1 1 2W 1 cos 2= γ + θ = γ γ  (γ1 = γ1

d) and  ( )2
1d

2
1 cos

4
γ + θ

γ =  

 

Extended Fowkes’ theory 
 
The combination of additivity and geometric mean has been used by many: 
 

( ) ( ) ( )1/ 2 1/ 2 1/ 2d d p p h h
12 1 2 1 2 1 2W 2 2 2= γ γ + γ γ + γ γ  (Kitazaki and Hate, 1972)4 

 

( ) ( )1/ 2 1/ 2d d n n
12 1 2 1 2W 2 2= γ γ + γ γ  (n = all non-dispersive componenets) 

 
By doing measurements with m number of liquids on the same surface, we can calculate m 
different components of the surface energy, if the corresponding components of the liquids 
are known. 
 
By using 2 liquids, A and B, we can write 
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( ) ( ) ( )1/ 2 1/ 2d d p p
12A 1A A 1A 2 1A 2W 1 cos 2 2= γ + θ = γ γ + γ γ  

( ) ( ) ( )1/ 2 1/ 2d d p p
12B 1B B 1B 2 1B 2W 1 cos 2 2= γ + θ = γ γ + γ γ  

 
The 2 equations can be linearized to give: 
 

( ) ( ) ( ) ( )
1/ 2 1/ 2d p

1/ 2 1/ 21A 1Ad p A
2 2

1A 1A

1 cos
2

γ γ + θ
γ + γ =

γ γ
 

 

( ) ( ) ( ) ( )
1/ 2 1/ 2d p

1/ 2 1/ 21B 1Bd p B
2 2

1B 1B

1 cos
2

γ γ + θ
γ + γ =

γ γ
 

 
These equation set is solved for (γ2

d)1/2 and (γ2
p)1/2. 

 
Usually, one polar (water) and one unpolar (methylene iodide) liquid are used. This is the so-
called two-liquid method. In the solution, care must be taken to check if a square root is 
negative. This indicates errors in the measurements. This procedure is used in DROPimage’s 
Surface Energy (Two Liquids) tool (Geometric Mean)5. 
 

The question of geometric or harmonic mean 
 
Fowkes’ assumption of the geometric mean is based on Berthelot’s hypothesis, again based 
on London’s theory of dispersive forces. 
 
The London (Lennard-Jones) attraction constants between like and dislike substances are 
 

d 1 2
12 1 2

1 2

3A
2

⎛ ⎞ν ν⎛ ⎞= α α⎜ ⎟⎜ ⎟ ν + ν⎝ ⎠ ⎝ ⎠
h ,   d 2

11 1 1
3A
4

⎛ ⎞= ν α⎜ ⎟
⎝ ⎠

h ,   d 2
22 2 2

3A
4

⎛ ⎞= ν α⎜ ⎟
⎝ ⎠

h  

 
where h = Planck’s constant, ν = frequency of vibration, α = polarizability 
 
If α is eliminated, we obtain 
 

1/ 2
d d d 1/ 21 2

12 11 22
1 2

2( )A (A A )ν ν
=

ν + ν
, and if ν1 = ν2 , then d d d 1/ 2

12 11 22A (A A )=  

 
After Girifalco and Good, the works of adhesion are expressed by 
 

1 2 12
12 2

12

n n A 1 1W
2 m 46d

⎛ ⎞= −⎜ ⎟−⎝ ⎠
,  

2
1 11

11 2
11

n A 1 1W
2 m 46d

⎛ ⎞= −⎜ ⎟−⎝ ⎠
, 

2
2 22

22 2
22

n A 1 1W
2 m 46d

⎛ ⎞= −⎜ ⎟−⎝ ⎠
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where n = molecular density, d = equilibrium distance between the phases, m = the repulsion 
constant (Lennard-Jones). By eliminating n, and using the expressions for Aij above, we 
obtain: 
 

d d d 1/ 21 2
12 11 222

12

d dW (W W )
d

=  (There are only dispersion energies here) 

 
If then d12 = (d11d22)1/2 we obtain: d d d 1/ 2

12 11 22W (W W )=  and therefore d d d 1/ 2
12 1 2W 2( )= γ γ  

 
These are therefore the assumption involved in using the geometric mean. 
 
It is, however, possible that some of these assumptions are less acceptable. It is possible to 
derive another mean, based on slightly different assumptions6: 
 
If we eliminate ν instead of α from the equations above, we obtain 
 

d d
d 11 22

12 d d
11 1 2 22 1 2

2A AA
A ( / ) A ( / )

=
α α + α α

 

 

If now α1 = α2 then the expression for A12 is: 
d d

d 11 22
12 d d

11 22

2A AA
A A

=
+

 , i.e. a harmonic mean 

 
By using the same equations for Wij as above, we now obtain 
 

d d 11 22 1 2
11 22 2

1 2d 12
12 d 2 d 2

11 11 1 22 22 2

d d d d2W W
n n dW

W (d / n ) W (d / n )
=

+
 

 
If now again 1/ 2

12 11 22d (d d )≅  and in addition 1 11 2 22n / d n / d≅ , the work of adhesion 
becomes 
 

d d
d 11 22

12 d d
11 22

2W WW
W W

=
+

,   and therefore  
d d

d 11 22
12 d d

11 22

4W γ γ
=

γ + γ
 

 
This is the harmonic mean for the work of adhesion. Wu has claimed that the harmonic mean 
is better suited for low energy surfaces, such as polymers6. 
 
On the next page are shown two figures of the work of adhesion plotted as a function of the 
dispersive and polar surface energy components. The plot using the harmonic mean is seen to 
give generally lower values for the work of adhesion than the geometric mean.  
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Measuring surface energies with 2 liquids by the harmonic mean 
 
In the same way as with using the geometric mean, the harmonic mean may be used to 
calculate the dispersive and polar components of the surface energy by measuring the angles 
of two liquids, A and B.  
 
The two equations are then: 
 

( )
d d p p

1A 2 1A 2
12A 1A A d d p p

1A 2 1A 2

4 4W 1 cos γ γ γ γ
= γ + θ = +

γ + γ γ + γ
 

 

( )
d d p p

1B 2 1B 2
12B 1B B d d p p

1B 2 1B 2

4 4W 1 cos γ γ γ γ
= γ + θ = +

γ + γ γ + γ
 

 
Here, the harmonic mean is used also for the polar components. The justification of this 
assumption is not necessarily solid, but is necessary here to obtain an analytical solution. This 
set of equations may be converted to two second degree equations as given below. 
 

( )
( )

2d d d d d
2 2

2p p p p p
2 2

a b c 0

a b c 0

γ + γ + =

γ + γ + =
 

 
Where the constants are 
 

d
B A A B

d
B A A B A B B A

d
B A A B

a A B A B

b C B C B D A D A

c D C D C

= −

= − − +

= −

  and 

p
B A A B

p
B A A B A B B A

p
B A A B

a A C A C

b B C B C D A D A

c D B D B

= −

= − − +

= −
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and 
( )
( )

( )

i 1i

p d
i 1i 1i 1i i

d p
i 1i 1i 1i i

d p
i 1i 1i 1i i

A (3 cos ) / 4

B 1 cos / 4

C 1 cos / 4

D (1 cos / 4

= γ − θ

⎡ ⎤= γ γ − γ + θ⎣ ⎦
⎡ ⎤= γ γ − γ + θ⎣ ⎦

= γ γ γ + θ

 for i = A and B, respectively 

 
The roots of the second degree equations are found in the usual way, taking care to obtain the 
correct, positive, roots. This procedure is used in DROPimage’s Surface Energy (Two 
Liquids) tool (Harmonic Mean). 
 

Combinations of means 
 
Different combinations of geometric and harmonic means have also been proposed, for 
instance the following combination6: 
 

p p
d d 1/ 2 1 2

12 1 2 p p
1 2

4W 2( ) γ γ
= γ γ +

γ + γ
 

 
Wu proposed that this equation should be used for high energy surfaces, such as mercury, 
glass, oxides and graphite, while the harmonic mean also should be uses for the dispersive 
components in the case of polymer surfaces. 
 

Acid-base interactions 
 
Also, even if these types of relationships fit for the dispersion forces, and possibly also for 
some polar (Debye and Keesom forces), they are not so good for acid/base and hydrogen 
bonding. For this, Van Oss and coworkers7-9 have proposed other combination of surface 
energies. 
 
The argument is that often, the polar (Keesom and Debye) forces are weak, and can be 
included in the dispersive contribution. The “combined” contribution is denoted by LW – 
Lifschitz-van der Waals. In addition, there is a short-range interaction (SR), that is caused by 
acid-base interactions (hydrogen bonding is a type of acid-base). 
 
We can write: LW ABγ = γ + γ  
 

WLW can be expressed by the geometric mean (after Fowkes): ( )1/ 2LW LW LW
12 1 2W 2= γ γ  

 
However, WAB can not be expressed in this way, as the basic components of the surface only 
interact with the acid components of the liquid, and vice versa.  
 
Therefore, Van Oss and coworkers write: ( ) ( )1/ 2 1/ 2AB

12 1 2 1 2W 2 2+ − − += γ γ + γ γ  
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where γi
+ is the acidic part and γi

- the basic part. Some substances that have only acidic or 
only basic properties are classified as monopolar, while substances with both types of 
properties are bipolar.  
 

Calculation 
 
By measuring the contact angle of three different liquids, A, B, and C, with known LW, acidic 
and basic components, the corresponding surface energies of the solid can be calculated. 
 

( ) ( ) ( ) ( )1/ 2 1/ 2 1/ 2LW LW
12A 1A A 1A 2 1A 2 1A 2W 1 cos 2 2 2+ − − += γ + θ = γ γ + γ γ + γ γ  

( ) ( ) ( ) ( )1/ 2 1/ 2 1/ 2LW LW
12B 1B B 1B 2 1B 2 1B 2W 1 cos 2 2 2+ − − += γ + θ = γ γ + γ γ + γ γ  

( ) ( ) ( ) ( )1/ 2 1/ 2 1/ 2LW LW
12C 1C C 1C 2 1C 2 1C 2W 1 cos 2 2 2+ − − += γ + θ = γ γ + γ γ + γ γ  

 
These equations are solved in the same way as the 2-equaions set above. We may express the 
set in matrix form: 
 
Coefficient vector:  LW 1/ 2 1/ 2 1/ 2

2 2 2[( ) ( ) ( ) ]a − += γ γ γ  
 

The x-matix:  

LW 1/ 2 1/ 2 1/ 2
1A 1A 1A

1A 1A 1A
LW 1/ 2 1/ 2 1/ 2

1B 1B 1B

1B 1B 1B
LW 1/ 2 1/ 2 1/ 2

1C 1C 1C

1C 1C 1C

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

+ −

+ −

+ −

⎡ ⎤γ γ γ
⎢ ⎥γ γ γ⎢ ⎥
⎢ ⎥γ γ γ

= ⎢ ⎥
γ γ γ⎢ ⎥

⎢ ⎥γ γ γ⎢ ⎥
γ γ γ⎢ ⎥⎣ ⎦

α  

 

The y-vector:  
A

B

C

(1 cos( )) / 2
(1 cos( )) / 2
(1 cos( )) / 2

+ θ⎡ ⎤
⎢ ⎥= + θ⎢ ⎥
⎢ ⎥+ θ⎣ ⎦

β  

 
The solution is then obtained from the solution: a = β α-1 by the usual matrix inversion and 
multiplication. This procedure is used by DROPimage’s Acid-Base tool. 
 

Using more than 2 liquids in Fowkes’ method 
 
In the modified Fokes’ theory only two liquids are used to calculate the dispersive and polar 
components of the surface energy. If more than two liquids are used, all combination of liquid 
pairs may be used to calculate the components, and then the average of these may be taken. 
However, there is also another method that has been proposed in the literature10 by using a 
regression line. 
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The extended Fowkes’ equation   
 

( ) ( ) ( )1/ 2 1/ 2d d p p
1 1 2 1 21 cos 2 2γ + θ = γ γ + γ γ  

 

is modified by dividing by ( )1/ 2d
12 γ and we obtain 

 

( )
( )

( ) ( )
1/ 2p1/ 2 1/ 2d p1 1

2 21/ 2 dd 11

1 cos
2

⎛ ⎞γ γ
+ θ = γ + γ ⎜ ⎟⎜ ⎟γ⎝ ⎠γ

 

If we plot the left side of this equation as a function of 
1/ 2p

1
d

1

⎛ ⎞γ
⎜ ⎟⎜ ⎟γ⎝ ⎠

we get a straight line with the 

slope equal to ( )1/ 2p
2γ and intercept on the y-axis equal to ( )1/ 2d

2γ . With only two liquids the 

result is the same as with the Surface Energy (Two Liquids) method, using the geometric 
mean. But the advantage with the regression is that more liquids may be used, and that by this 
method it also possible to do a realistic evaluation of the errors involved. This procedure is 
implemented in the DROPimage Surface Energy (Multi Liquids) tool. 
 
One should be careful not to accept negative slopes in this regression because the square 
always comes out positive. A negative slope is clearly caused by errors in the contact angle 
data or the surface energies of the liquids. 
 

Measurements of high energy surfaces 
 
As most liquids are spread on a high energy surface, the contact angle cannot be measured. 
However, Shultz (1977)11 has developed a method where these angles may be measured by 
submerging the surface in one liquid and using a second liquid to measure the contact angle. 
Usually, hydrocarbons like n-hexane, n-octane, n-decane, and n-hexadecane are used as the 
submerging liquids and water as the contact angle liquid. 
 
We can show this by the following derivation (using the geometric mean) 
 
For the hydrocarbon: d 1/ 2

SH S H S H2( )γ = γ + γ − γ γ  
 
For the water drop: d d 1/ 2

SW S W S W SW2( ) Eγ = γ + γ − γ γ −  
 
where S denotes solid, H hydrocarbon, and W water. The parameter ESW is the excess 
interaction energy, i.e. the polar part. By subtracting the second from the first equation, we 
obtain 
 

d 1/ 2 d 1/ 2 1/ 2
SH SW H W S W H SW2( ) [( ) ( ) ] Eγ − γ = γ − γ + γ γ − γ +  
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From Young’s equation SH SW WH cosγ − γ = γ θ , we obtain 
 

d 1/ 2 d 1/ 2 1/ 2
WH H W S W H SWcos 2( ) [( ) ( ) ] Eγ θ = γ − γ + γ γ − γ + , or 

 
d 1/ 2 d 1/ 2 1/ 2

W H WH S W H SWcos 2( ) [( ) ( ) ] Eγ − γ + γ θ = γ γ − γ +  

 
By plotting the left side against d 1/ 2 1/ 2

W H( ) ( )γ − γ  we get a straight line with the slope 
d 1/ 2

S2( )γ  and intercept ESW.  
 
Using the geometric mean, ESW is 
expressed according to the 
extended Fowkes’ theory as 

p p 1/ 2
SW S WE 2( )= γ γ .  

 
Knowing the polar part of the 
surface tension of water, the solid’s 
polar component can be easily 
calculated and thus the total 
surface energy of the solid. The 
figure to the left shows an example 
of this type of plot. 
 
The described method is applied in the Solid-Liquid-Liquid (SLL) Surface Energy tool in 
DROPimage. 
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